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Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delinea-
tion in radiation therapy treatment planning. This study aims at developing a novel T2-weighted
retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for
imaging organ/tumor respiratory motion.
Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence
was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion
was measured using an external breathing monitoring device. A phase sorting method was developed
to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was
applied to effectively utilize redundant images in the case when multiple images were allocated
to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most
representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the
sequential image acquisition scheme) with the conventionally used cine or helical image acquisition
scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important
challenge of the proposed technique was to determine the number of repeated scans (NR) required
to obtain sufficient phase information at each slice position. To tackle this challenge, the authors
first conducted computer simulations using real-time position management respiratory signals of the
29 cancer patients under an IRB-approved retrospective study to derive the relationships between
NR and the following factors: number of slices (NS), number of 4D-MRI respiratory bins (NB), and
starting phase at image acquisition (P0). To validate the authors’ technique, 4D-MRI acquisition and
reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using
simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study
to investigate the feasibility of this technique.
Results: 4D data acquisition completeness (Cp) increases as NR increases in an inverse-exponential
fashion (Cp = 100−99×exp(−0.18×NR), when NB = 6, fitted using 29 patients’ data). The NR

required for 4D-MRI reconstruction (defined as achieving 95% completeness, Cp = 95%, NR = NR,95)
is proportional to NB (NR,95∼ 2.86×NB, r = 1.0), but independent of NS and P0. Simulated XCAT
4D-MRI showed a clear pattern of respiratory motion. Tumor motion trajectories measured on
4D-MRI were comparable to the average input signal, with a mean relative amplitude error of
2.7%±2.9%. Reconstructed 4D-MRI for healthy volunteers illustrated clear respiratory motion on
three orthogonal planes, with minimal image artifacts. The artifacts were presumably caused by
breathing irregularity and incompleteness of data acquisition (95% acquired only). The mean relative
amplitude error between critical structure trajectory and average breathing curve for 12 healthy
volunteers is 2.5±0.3 mm in superior–inferior direction.
Conclusions: A novel T2-weighted retrospective phase sorting 4D-MRI technique has been devel-
oped and successfully applied on digital phantom and healthy volunteers. C 2015 American Associa-
tion of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4923168]
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1. INTRODUCTION

Respiratory motion can cause potential errors in organ delin-
eation and dose delivery in radiation therapy for thoracic and
abdominal cancers.1 Four-dimensional computed tomography
(4D-CT) has been widely used to determine patient-specific
respiratory motion for individualized safety margins.2–4 4D-
CT is composed of a set of 3D volumetric images reconstructed
from dynamic axial 2D images acquired during free breath-
ing. The 3D images are reconstructed at selected phases of
respiratory cycles to form a 4D-CT dataset.5–9 Each of these
respiratory states consists one 3D image dataset with all its
component 2D slice images in one respiratory state. In order
to sort the 2D CT images, a synchronized external or internal
respiratory signal is usually acquired along with the CT scans.
Based on the amplitude or phase of the respiratory signal, CT
images are sorted into different respiratory phases.

Four dimensional magnetic resonance imaging (4D-MRI)
is an emerging technique for imaging respiratory motion, espe-
cially in the abdomen. It offers several advantages over 4D-
CT: (1) superior soft-tissue contrast, which allows better delin-
eation of target volumes and organs; (2) no radiation haz-
ard,1,10–12 which enables longer imaging time, better image
quality, and more accurate measurement of respiratory motion;
and (3) flexibility in imaging plane selection, which may allow
for more accurate and efficient image acquisition of the respi-
ratory motion.

Recently, several methods of 4D-MRI have been proposed.
A detailed review of these studies can be found in the liter-
ature.13 In brief, there are two main approaches to develop
4D-MRI: (1) prospective 4D-MRI, which uses fast 3D MR
sequences to acquire real-time volumetric images. However,
due to current technical limitations, significant compromise on
image quality has to be made in order to achieve the high speed
of 3D MR imaging. Typical temporal and spatial resolutions
of prospective 4D-MRI are approximately 1 s and 4 mm,
respectively,14,15 inadequate for radiotherapy applications; (2)
retrospective 4D-MRI, which uses fast 2D MR sequences to
continuously acquire images for different respiratory phases
at all slice locations, sorts the images by their respiratory
phases. Compared to prospective 4D-MRI, retrospective 4D-
MRI improves spatial/temporal resolution and reduces motion
artifacts.

Cai et al. have recently developed a retrospective 4D-
MRI technique using a 2D fast T2*/T1-weighted steady-state
free precession (TrueFISP/FIESTA) MR sequence13 and are
currently conducting a pilot trial to evaluate it in liver cancer
patients.16 Initial results of the study showed that the 4D-MRI
technique accurately measured respiratory motion of liver can-
cer patients (error <1 mm) and have improved tumor contrast
compared to 4D-CT. The mean tumor contrast is 19.4 (±14.6)
and 2.9 (±1.5) in 4D-MRI and in 4D-CT, respectively. While
promising, the 4D-MRI technique was found to have large
interpatient variation in tumor contrast, presumably due to the
T2*/T1-weighting mechanism and cancer type variances.

T2-weighted MRI sequence fast recovery fast spin echo
(FRFSE) is the clinical standard MR sequence for liver cancer
diagnosis,17–19 often presenting higher tumor contrast than

T2*/T1-weighted MRI. It is therefore highly desirable to
develop 4D-MRI technique with T2-weighted contrast. How-
ever, T2-weighted MRI usually requires long repetition time
and therefore results in low temporal resolution, making them
suboptimal choices for 4D imaging. In compensation for the
low temporal resolution of FRFSE MRI sequence, we consid-
ered using a half-Fourier acquisition single-shot turbo spin-
echo (HASTE/SSFSE) MR sequence, which is a T2-weighted,
high speed sequence with partial Fourier technique, for 4D-
MRI image acquisition. The frame rate of HASTE/SSFSE
sequence is approximately 2–3 frames/s, sufficient for 4D-
MRI image acquisition. Recently, Hu et al. have proposed a
prospective 4D-MRI technique based on the HASTE/SSFSE
sequence.9 In their study, a respiratory triggering system was
developed to prospectively guide 4D-MRI acquisition. The
reconstructed 4D-MRI achieved great soft-tissue contrast.
However, the technique required hardware adjustment for
MR scanner. For example, triggering system was adjusted to
acquire image for multiple respiratory states, rather than just
one. Also, adjustments were made to display markers on the
console computer during the time when k-space was sampled.
The markers were used to indicate the active image acquisition
period on the individual’s respiratory waveform.

Current retrospective 4D-CT (Refs. 5–8) and 4D-MRI
(Ref. 13) techniques typically acquire images in cine or slow-
pitch helical mode. With these techniques, 2D images are
continuously acquired at the same slice position (or nearly
the same slice position in the helical mode) for a period of
time. The process is then repeated at multiple slice positions
to cover the volume of interest. To satisfy data completeness
condition,20 i.e., when images of all sorting bins and all
slice positions have been acquired, imaging time per slice
position is set to be longer than patient’s breathing period.
This sorting process, however, cannot be applied to retrospec-
tive T2-weighted 4D-MRI using HASTE/SSFSE sequence.
HASTE/SSFSE sequence acquires image for volume of inter-
est in sequential mode, which includes ascending, descend-
ing, and interleaved submodes. This scanning for volume
of interest was repeated a preset number of times, which
was pre-estimated via computer simulations. The acquisition
scheme is shown in Fig. 1. With this different image acquisi-
tion scheme, our current research aim is to develop a phase
sorting technique for sequential acquisition mode to utilize
HASTE/SSFSE MRI sequence to reconstruct T2-weighted
4D-MRI.

There are mainly two problems in developing the technique.
First, due to the relatively stochastic respiratory phase for each
acquired 2D image, the 4D-MRI image acquisition time is not
obviously and directly predictable. The 4D-MRI data suffi-
cient condition can be affected by multiple factors, including
the number of repetitions (NR), the number of slices (NS), the
number of sorting bins (NB), the initial respiratory phase at the
start of image acquisition (P0), the patients’ breathing period
(BP), and the breathing variation (standard deviation of breath-
ing period, BV). Second, multiple images might be sorted
to one phase bin at a slice location. The image redundancy
requires an effective utilization of these images to generate 4D-
MRI.
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F. 1. Image acquisition mode comparison for cine mode (a) and T2-weighted HASTE/SSFSE MR sequential mode, which includes ascending, interleaved,
and descending submodes (b). In (a), the top row shows the respiratory signal recorded and the bottom row shows the image acquisition locations. In (b), the
top row demonstrates the respiratory signal recorded, and the second, third, and bottom rows demonstrate image acquisition locations for the ascending mode,
interleaved mode, and descending mode, respectively.

In this paper, we present our approaches to resolve these
challenges in developing the retrospective T2-weighted 4D-
MRI. In particular, we have developed computer simulation
programs to study the relationships between data completeness
and associated factors. We have also developed a result-driven
sorting strategy to effectively utilize redundant images for each
phase bin. Our T2-weighted MRI technique has been validated
and tested on a digital human phantom and healthy volunteers.

2. METHODS AND MATERIALS
2.A. Result-driven retrospective sorting

The 4D-MRI sorting technique is applied on a fast 2D MR
sequence HASTE/SSFSE in the axial plane with free breath-
ing. The sequence has high temporal resolutions (∼2 frames/s)
and a good tumor visibility. The acquisition time for each
2D MR image can be synchronized with respiratory signal
recorded by the external surrogate, so that the respiratory
phase for each image can be calculated from the synchronized
respiratory signal. No couch position movements are needed
for 4D-MRI. If two peaks are detected before and after the time

point of interest, the phase of the peak before will be defined
as 0% and the peak after will be defined as 100%. Linear
interpolation will be applied to the time points in between to
determine the respiratory phase for each time point, as follows:

ϕ=
t− t0%

t100%− t0%
×100%, if t100% ≤ t ≤ t0%, (1)

where ϕ is the phase for the time point of t, which is between
two peaks. t0% is the time of the peak immediately before t,
and t100% is the time of the peak right after t.

In the beginning of the breathing profile, for the time points
before the first respiratory peak, t100%− t0% of the first incom-
plete breathing cycle will be estimated by the period of the
cycle nearby (the first complete breathing cycle). Linear inter-
polation will still be applied to calculate ϕ for the time point t;
similar process will be applied for the last breathing period of
the breathing profile. Peak detection can be plotted, checked,
and revised manually. By synchronizing 2D MR images and
the breathing profile, phases can be derived for each image
using formula (1).

The retrospective sorting is based on the calculated phases
for each image. The sorting process is shown in Fig. 2. For
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F. 2. Illustration of phase sorting process with result-driven strategy. For illustration purposes, the total number of slices is set to be 8 and the total number
of respiratory phase bins was set to be 6. Sequential acquisition mode is used to repeatedly (labeled as repetition no.) acquire 2D MRI images for volume of
interest. Slice location information and respiratory signal are recorded with image acquisition. Red S-number is the slice location index for each 2D MR image,
and respiratory phase is calculated accordingly. The sorting process is illustrated on slice 1 as an example. Seven images for slice 1 from seven repetitions come
from different respiratory phases. Each of them is assigned to a phase bin. Result-driven strategy is applied to the phase bin with redundant images. The one
with minimum amplitude error as compared with average breathing curve will be selected as a component of the 4D dataset.

illustration purposes, the total number of slices is set to be
8 and the total number of phase bins is set to be 6. Image
acquisition and sorting for slice 1 (labeled as “s1” in Fig. 1) are
illustrated as an example. Acquired images for s1 are assigned
to different phase bins according to their respiratory signals.
This sorting will be conducted for each slice to generate 4D-
MRI dataset.

If redundant images are acquired, i.e., more than one 2D
image are binned to one phase bin and result-driven strategy
is applied to select the best one to generate 4D-MRI. As
shown in Fig. 3, this strategy uses the average respiratory
curve (gray curve), which is calculated from the entire breath-
ing signal recorded by the external surrogate, as the targeted
motion results that we are trying to achieve. The respiratory
amplitudes of all the acquired images (black dots) for one
bin are compared with the curve. More specifically, average
amplitudes for each phase bins (gray dots on the gray curve)
are calculated to be compared with the respiratory amplitude of
each image (black dots). The images with minimum absolute
amplitude error as compared with the average amplitude of its

corresponding phase bin will be selected to generate 4D-MRI
dataset.

As the number of repeated scan for the volume of interest
increases, 4D-MRI dataset will be filled with images from each
phase bin and slice location. We quantify dataset completeness
(CP, %) for each slice as the relationship between the number
of bins with image filled (Ni) and the total number of phase
bins for this slice (NB),

CP(%)= Ni/NB. (2)

As time increases, the dataset completeness for each slice
keeps increasing. Dataset completeness simulation using one
representative patient’s breathing profile has been conducted
as an example to show how dataset completeness increases
with time. As shown in Fig. 4 in gray bars, 20 slices as the
volume of interest and 10 phase bins are demonstrated as
an example. For the entire volume of interest, we extend the
definition for data completeness for each slice to a volumetric
definition, defining 4D dataset completeness (4D CP, %) as the
relationship between the number of bins with image filled for
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F. 3. Amplitudes of each acquired images (black dots) for each phase bin
on the average respiratory curve (gray curve). The images with minimum
absolute amplitude error as compared to average amplitude (gray dots on
gray curve) of each phase bin will be selected to generate 4D-MRI dataset.
Dark gray straight line represents phases for the respiratory curve.

all slices (Ni,all) and the total number of phase bins for all slices
(NB,all),

4D CP(%)= Ni,all/NB,all. (3)

A completeness curve can be generated to illustrate the 4D
dataset collection progress as time increases, as shown in Fig. 4
black curve with NR labeled.

In case 4D CP (%) is less than 100%, where there could be
missing images for a phase bin, the nearest adjacent phase in
the same slice location will be used as a representative of that
phase bin.

2.B. Digital phantom [extended cardiac-torso (XCAT)]
validation study

The T2-weighted 4D-MRI technique was tested on a 4D
digital XCAT human phantom21,22 with a regular breathing
profile (period: 5 s). XCAT was programmed to move with the
given diaphragm motion in the superior–interior (SI) direction
and with the given chest wall motion in the anterior–posterior
(AP) direction. The peak-to-peak motion amplitude was set to
3.0 and 1.0 cm for the diaphragm and chest wall, respectively.
The XCAT images were generated only for the abdominal
region using the following parameters: in-plane resolution:
256×256; voxel size: 1.25 mm; slice thickness: 3 mm; frame
rate: 2.48 Hz. The XCAT phantom was generated in the ac-
tivity mode for MRI-like image appearance where the signal
intensities of the organs and tissues were assigned using values
derived from HASTE/SSFSE MRI images. A hypothesized
spherical tumor of 15 mm in diameter was located in the center
of the liver.

The simulation of the proposed T2-weighted 4D-MRI tech-
nique was carried out on the 4D-XCAT phantom in the follow-
ing steps: (1) mimicking the image acquisition of HASTE/
SSFSE sequence by sequentially (ascending, descending, or
interleave) extracting axial 2D XCAT images from the 4D-
XCAT phantom for a volume of interest; (2) repeating Step
1 for a number of times. The number of repetitions should be

F. 4. Dataset completeness simulation using one representative patient’s
breathing profile. Dataset completeness for each slice increases with the
acquisition time. 20 slices as the volume of interest and 10 phase bins are
demonstrated as an example. Dataset completeness (CP, %) for each slice
increases with time as illustrated by gray bars and the corresponding 4D
dataset completeness (4D CP, %) curves are shown in black curve with NR

labeled.

large enough to satisfy data completeness condition, as demon-
strated in Sec. 2.A. In this phantom study, the total number of
repetition was set as 30; (3) calculating the respiratory phase
for each extracted 2D XCAT image; and (4) generating the

Medical Physics, Vol. 42, No. 8, August 2015



4465 Liu et al.: T2-weighted 4D-MRI with result-driven phase sorting 4465

simulated T2-w “4D-MRI” by rebinning the 2D XCAT images
using the result-driven retrospective sorting method. The total
number of phase bins was set as 10 in this phantom study.

The simulated 4D-MRI using the phase sorting technique
was validated by comparing it with the original 4D-XCAT
phantom which was generated using the same respiratory mo-
tion profiles and imaging parameters. The motion trajectories
of the hypothesized tumor were determined from the simulated
4D-MRI and compared to those measured from the original
4D-XCAT images. The relative amplitude error in motion
trajectories was calculated in SI and AP directions.

2.C. Digital (XCAT) phantom studies of variable
breathing: Data completeness and impacting factors

In order to estimate the image acquisition time needed for
retrospective T2-weighted 4D-MRI and to study the relation-
ships between data completeness and potential affecting fac-
tors (NR, NS, NB, P0, BP, and BV), we performed a computer
simulation study using simulated irregular respiratory signals
and real patients’ respiratory signals. The simulated signals
included 2500 irregular breathing profiles whose periods were
between 0 and 10 s with random breathing variations. Patients’
respiratory signals were the real-time position management
(RPM) (Varian Medical Systems, Inc., Palo Alto, CA) breath-
ing signals recorded during the patients’ clinical 4DCT scans.
A total of 29 cancer patients’ (13 females and 16 males, 10
abdominal cancers and 19 lung cancers) RPM signals were
used in the simulation. We repeated the whole RPM data
trace when the total duration was not long enough for the 4D-
MRI simulation. The 29 cancer patients were enrolled in an
IRB-approved retrospective study. All three image acquisition
modes (ascending, interleaved, and descending) were tested in
the simulation.

As the total number of 2D MR images acquired increases,
the 4D dataset completeness increases, until it reaches 100%.
A threshold of completeness should be determined to measure
the total scanning time needed to acquire enough 2D images
for 4D reconstructions. In our simulation, in order to estimate
the threshold, a regular breathing motion profile and 29 pa-
tients’ breathing motion profiles were used as an input for
XCAT to control its motion, with the moving tumor diameter
set at 15 mm. Different scans or exam times were simulated by
sampling contiguous motion subsets of the simulated XCAT
data, setting the total number of slices at 30 and the number of
bins at 8 for regular breathing motion profile (6 for patients’
breathing motion profiles). With the reconstructed 4D images
for different total scanning time, the trajectory of the tumor in
SI direction of the tumor in each phase bin can be measured
and compared to the original input for XCAT, and relative
amplitude error was calculated. Based on the relationship be-
tween percentage of completeness and the relative trajectory
amplitude error, threshold of the completeness percentage can
be determined.

With the threshold set above, completeness curves were
calculated for each of the 29 patients’ respiratory profiles, and
the number of repeated scans when completeness reached the
set threshold (NR, threshold) was measured. The total number

of bins was set to be 6 and the total number of slices was set
to be 30 for phase sorting. Different image acquisition and
4D reconstruction parameters including the total number of
phase bins (NB), the total number of slices (NS) of the volume
of interest, and the starting phase of the scanning (P0) were
tested. The relationship between NR, threshold and the above
parameters was investigated.

Furthermore, NR, threshold could be influenced by the
respiratory motion irregularity. The 2500 respiratory profiles
were not related to the 29 patients’ breathing profiles. They
were generated separately by varying BP (ranges from 0 to
10 s, the interval is 0.2 s) and BV (ranges from 0 to 5 s, the
interval is 0.1 s) to study the relationship between the breathing
irregularity and NR,threshold. To generate breathing irregular-
ities in any one of these breathing profiles, random (and thus
different) period values were assigned to each breathing cycle
of the profile, where the period values were generated based
on each breathing profile’s BP and BV values.

2.D. Healthy volunteer study

To evaluate our phase sorting technique for 4D-MRI, 12
healthy volunteers (six females and six males) were enrolled in
an IRB-approved study. 4D-MRI image acquisition was per-
formed employing the HASTE/SSFSE sequence. The image
acquisition mode was sequentially acquiring 2D MR images
for volume of interest, and then repeating the volumetric acqui-
sition for a preset number of times, which is pre-estimated as
described in Sec. 2.C. Single-slice cine MR images were also
acquired in the axial, coronal, and sagittal planes across the
center of the critical structure (vessels in liver), providing an
estimate of ground-truth of respiratory motion for comparison.
All images were acquired in a 3 T Siemens clinical scan-
ner. The subjects were positioned head-first-supine with arms
down in the absence of immobilization devices and were in-
structed to keep normal respiration during the scans. Imaging
parameters involved were repetition time (TR)/echo time (TE),
975/59 ms; field of view (FOV), 350×317.19 mm; flip angle,
115◦; slice thickness, 5 mm; matrix, 256× 232; bandwidth,
781 Hz/pixel. Healthy volunteers had different total number
of slices. The range of the total number of slices was chosen
to range from 15 to 35, and average total number of slices
was 28± 5. The numbers of repetition for all healthy volun-
teers were estimated based on the simulation (described in
Sec. 2.C) results and imaging parameters (NR, NS, NB) used
for each healthy volunteer. Imaging frame rate was approx-
imately 2 frames/s. Breathing signals were recorded during
image acquisition using Siemens’ physiological monitoring
unit (PMU)28,29 system with the bellows wrapped around the
abdominal region. The sample rate was 50 Hz. In our case,
the computer drive PMU was the same with the one con-
nected to the MR scanner, so MR image acquisition time
can be synchronized with the time information recorded in
the logging file generated by PMU. The PMU data logging
was initiated manually via commands to the PMU/scanner
computer before the sequence run. Time stamps in the header
of the PMU log file were used to associate the PMU trace with
the 2D image acquisition times, which was recorded in the
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header of image file. 4D-MRI were reconstructed using the
result-driven, retrospective sorting technique described earlier
in Sec. 2.A. The total number of 4D-MRI phase bins was
selected to be 6 for all healthy volunteers. Tumor motion
trajectories in the SI, AP, and medial–lateral (ML) directions
were determined from 4D-MRI and compared with those from
single-slice cine MR images, which served as references. On
single-slice cine MR images, the same ROIs were tracked as on
4D-MRI. The ROI motion in SI and AP directions was tracked
on sagittal cine, and its motion in ML direction was tracked on
coronal cine. These tracking cine planes were selected because
they have less interplane motion.

3. RESULTS
3.A. Digital phantom (XCAT) validation study

The 4D reconstruction results for ascending, interleaved,
descending image acquisition modes are very similar. Nearly
no obvious difference can be observed from the image. Figure 5
shows the simulated 4D-MRI (only phase 5 is shown as a
representative) for ascending mode of the XCAT phantom and
its comparison with the original 4D XCAT phantom. The two
image sets in general matched well; only minor differences
were found at the edge of organs, as shown in Figs. 5(c),
5(f), and 5(e). The comparison of motion trajectories of the

F. 5. Reconstructed 10-bin T2-weighted 4D-MRI (only phase 5 is shown
as a representative) simulated with XCAT phantom in axial (a), sagittal (d),
and coronal (g) view, in comparison with the original 4D XCAT images [(b),
(e), and (h)]. The differences between the two are shown in panels (c), (f),
and (i) respectively. This is the XCAT simulation results where breathing
motion was strictly regular and the data sufficiency condition was met. The
total number of repetition (NR) was set as 30 for the simulation scan.

F. 6. Motion trajectories comparison of the hypothesized tumor in SI and
AP direction. This is the XCAT simulation results where breathing motion
was strictly regular and the data sufficiency condition was met.

hypothesized tumor on reconstructed 4D-MRI and average
respiratory curve calculated from input are shown in Fig. 6.
Those measured from reconstructed 4D-MRI matched well
with the input motion profile: the mean (±SD) relative ampli-
tude error in motion amplitude is 2.7(±2.9)% in SI direction
and 3.4(±3.0)% in AP direction.

3.B. Digital (XCAT) phantom studies of variable
breathing: Data completeness and impacting factors

As expected, the percentage of data completeness increases
as NR increases, as shown as an example in Fig. 4. The relation-
ship between the two can be best fitted by an inverse exponen-
tial function [formula (4)]. Figure 7 shows the average curves
with error bars of the percentage of data completeness as a
function of NR on average of 29 patients for three acquisition
modes: ascending (a), descending (b), and interleaved (c). It
was found there is no difference in the relationship between
the three acquisition modes. The best function to describe the
relationship was found to be

CP = 100× (1−e−0.18×NR), when NS = 30, NB = 6. (4)

According to the function, it can be seen that 100% data
completeness would require a very large value of NR. In prac-
tical, missing a very small percentage of data does not cause
clinically significant differences. From the relationship be-
tween error in tumor motion measurement and the percentage
of data completeness derived, the error decreases as the per-
centage of data completeness increases and reaches a stable
stage at approximately 95% of data completeness, as shown
in Fig. 8 for both regular breathing motion (a) and patients’
breathing motions (b). Both regular breathing motion case
and patients’ breathing motion case indicate that 95% of data
completeness, labeled as NR,95, is sufficient for 4D-MRI im-
age acquisition. We therefore define NR,95 as the number of
repetition needed for 4D-MRI image acquisition.
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F. 7. Completeness curve for 29 patients in three acquisition modes: (a) ascending, (b) descending, and (c) interleaved. Acquisition mode does not affect the
completeness of 4D dataset acquisition. This is the simulation result using 29 patients’ RPM breathing traces.

The relationships between NR,95 and affecting factors (NB,
NS, P0, BP, BV) were further investigated and are illustrated
in Fig. 9. It was found that NR,95 has a linear relationship with
NB and is nearly independent of NS and P0. There is a slight
trend that BP is positively correlated with NR,95, but no clear
correlation between NR,95 and BV .

3.C. Healthy volunteer study

Figure 10 illustrates an example of the breathing signal
and the data completeness curve from a representative subject.

Figure 11 shows the six-phase 4D-MRI images in the axial (a),
sagittal (b), and coronal (c) views of the representative, healthy
volunteer no. 5. Reconstructed coronal 4D-MRI images of
him generally matched well with coronal cine MR images, as
illustrated in a Figs. 11(c) and 11(d). ROI tracking has been
measured on both reconstructed 4D-MRI and coronal cine MR
for comparison. The trajectories are shown in Fig. 12. The er-
ror bar shows the motion range of one critical structure (vessel)
measured on cine MR at different breathing cycles for each
respiratory phase. The absolute motion trajectory amplitude
error for this representative healthy volunteer is 2.0±1.2 mm.

F. 8. Relationship between percentage of completeness (Cp) and the relative amplitude error of tumor trajectory in SI direction. These figures show XCAT
simulation results using (a) strictly regular breathing motion and (b) 29 patients’ breathing profiles. In both cases, the relative amplitude error decreases as the
percentage of data completeness increases and reaches a stable stage at approximately 95% of data completeness.
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F. 9. (a) NR,95 is independent of NS; (b) NR,95 is independent of P0; and (c) linear relationship between NR,95 and NB. (d) NR,95 is not significantly
affected by the irregularity of respiratory. Specifically, in (a)–(c), 29 patients’ breathing profiles were used to statistically analyze the relationship between the
parameters. However, in Fig. (d), 2500 simulated respiratory profiles with different BP and BV have been generated to test the relationship between breathing
irregularity and NR,95.

For all 12 healthy volunteers, 4D-MRI was reconstructed to
six phase bins. Based on the data completeness and impacting
factors simulation results show in Sec. 3.B, NR was only
affected by NB. Since we set NB as 6 for all healthy volunteers,
according to Fig. 9(c), NR was set to be about 20. The range of
NR was selected to range from 15 to 30, and average NR was
20± 4. Image acquisition modes included all three available
modes (ascending, interleaved, and descending). In summary,
the average 4D reconstruction final completeness is 96.2±3.5;
the average scanning time required for six bin reconstruction
is 15.8 repetitions, which matched with the results from digital
phantom study. Average absolute motion trajectory amplitude
error is for all healthy volunteers is 2.5±0.3 mm.

4. DISCUSSION

In this study, we investigated the feasibility of a retro-
spective T2-weighted 4D-MRI phase sorting method. The

scanning time required for 4D reconstruction was estimated
and its relationships between each reconstruction parameter
were explored. The preliminary results demonstrate that the
phase sorting technique is feasible for MRI sequences with
sequential image acquisition modes, including ascending,
interleaved, and descending. The T2-weighted 4D-MRI tech-
nique can be applied on liver, pancreas, and many other
abdominal regions, even the lung region. However, further
development of image quality and decreasing the required
scanning time could be desirable and promising for our future
research. The image quality improvement could be achieved
via many approaches,31 including hardware upgrades and
software developments. Shortening the required scanning time
would be achieved by a more comprehensive sorting tech-
nique, taking amplitude sorting or other sorting method into
consideration.

Among the 12 healthy volunteers we tested on, only one
(healthy volunteer number 6) failed to reach the 95%

F. 10. (a) Part of the relative respiratory amplitude signal measured by bellows system. Phases were calculated according to the amplitudes. (b) Completeness
curve for one representative healthy volunteer, with total 20 slices, 20 measurements, 6 phase bins, and maximum 99.1667% completeness. Scanning time
required for 4D reconstruction is 14 repeated scans of volume of interest.
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F. 11. Reconstructed 4D-MRI for one represents healthy volunteer in axial view (a), sagittal view (b), coronal view (c), and in comparison with T2-weighted
cine in coronal view (d).

completeness threshold. The respiratory signal from this
healthy volunteer was found to be very irregular. Several
segments of breathing were shown as vibration with small
amplitudes. These segments led to useless image data since
it was difficult to calculate the phases for the images acquired
during the vibration segments.

A result-driven sorting technique was introduced in this
study. This result-driven strategy selects the most represen-
tative image from redundant images for each phase bin. The
respiratory motion revealed in 4D-MRI will be closest to the
average motion of the scanning period because the result-
driven mechanism will choose the image with the minimum
amplitude error as compared to the average breathing curve.
With longer scanning time, more redundant images could be
acquired. With more images, we have a larger pool of images
to choose from the most representative images of a particular
phase. That meant a larger probability of achieving a lower

F. 12. Critical structure trajectories from 4D-MRI matched well with those
from single-slice cine MR. The error bar shows the motion range of one
critical structure (vessel) measured on cine MR at different breathing cycles
for each respiratory phase. This figure shows the results of one representative
healthy volunteer.

amplitude error as compared with the average breathing curve.
This may lead to less volume inconsistency artifacts. Although
acquiring more redundant MRI images will need a longer
scanning time, larger radiation dose for human subjects is
not a concern for 4D-MRI as opposed to 4D-CT. In addition,
although the MRI scanning time could be relatively longer
than 4D-CT, it should be under controlled considering hu-
man subjects’ tolerance for the scan heating. Therefore, the
required scanning time and data sufficient condition study are
necessary.

PMU is a widely used external surrogate for respiratory
motion. It has been reported to be used in many studies.20,28,29

Although PMU has uncertainties, our method assumes that
the PMU signal has constant gain (i.e., retains its amplitude
calibration) over the duration of image acquisition. The uncer-
tainties of PMU have limited impact on our study. In order to
estimate the PMU accuracy for our study, a phantom study was
conducted to compare PMU signal with phantom motion. The
phantom was an in-house constructed MRI-compatible motion
water phantom. It consisted of a MRI-compatible motion stage
and a surgical low-elastic stick attached to it. The motion stage
consisted of a supporting platform (2 cm foam slab), a foam
motion box as a container with a 3×3×5 cm water phantom,
and two bottles of water used to amplify MR signal. The
motion stage was driven by a motor using the stick. The motor
was set to move in a sinusoidal wave (peak-to-peak amplitude
= 2.0 cm, period = 5 s), driving the motion stage to move in
the same pattern. Consequently, the imaging object moved
along the SI direction. During the MR experiments, the mo-
tion stage was placed in the MR scanner while the motor
was placed approximately 3 m away from the center of the
scanner. Sagittal single slice cine was acquired on a Siemens
3 T system using a TrueFISP/FIESTA sequence with head
coil. Imaging parameters were TR/TE: 186.78/1.25 ms; FOV:
300 × 253.12 mm; flip angle: 52◦; slice thickness: 5 mm;
matrix: 192×162; pixel size 1.56×1.56 mm. Frame rate was
approximately 5 frames/s. Sagittal cine was acquired for 21 s.
The respiratory bellow was wrapped on the motor to measure
the motion. The PMU signal was recorded and compared with
ROI trajectory from cine. Figure 13 illustrated the PMU signal
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F. 13. The comparison of the PMU signal with the ROI trajectory from
sagittal cine images for a motion phantom. This phantom study was con-
ducted to estimate PMU signal accuracy.

and ROI trajectory comparison. They matched well with each
other. It can be observed that the peaks can be accurately deter-
mined from PMU signal, so PMU could be accurate enough
for phase-based binning. It should be noticed that the average
scanning time in our healthy volunteers study was about 8
min. The PMU signal can slowly drift over the time period of
minutes. The drift has been reported to have a temporal scaling
factor of about 1.003 or 0.3% per unit time.20,32 Dedrifting of
PMU signal may help selecting the most representative image
for each phase bin during the result-driven retrospective sort-
ing process. Investigation of appropriate dedrifting methods
will be included in our future study.

Our study has some similarities with other retrospective
sorting studies regarding to needing of dealing with data
redundancy problem. In Ref. 20, they deal with the problem
by combining the redundant images in one phase bin at a slice
location to derive a representative final image. However, in
our present study, we assume that internal motion is correlated
with the amplitude of the external surrogate. We select one
“most representative” frame with minimum amplitude error
as compared with average breathing curve. Furthermore, our
study has major differences/improvements compared to the
other 4D-MRI sorting techniques reported in the literature:20

(1) data sufficient condition was studied using the 29 patients’
breathing signals in our study. Relationship between scanning
parameters and necessary 4D-MRI acquisition time was estab-
lished. These are new and important developments compared
to the technique introduced in Ref. 20; (2) all MRI sequences’
acquisition modes, ascending, interleaf, and descending have
been incorporated into our phase sorting technique. Refer-
ence 20 only developed sorting technique for interleave mode
of HASTE sequence. Although in Ref. 20, ascending mode
has been studied for TrueFISP sequence, TrueFISP provides
T2*/T1-w MRI not T2-w MRI. As we measured on 11 cancer
patients, compared to their T2-w MRI, their T2*/T1-w MRI
has significant (sign test p-value= 0.02) lower tumor-to-tissue
contrast. The 11 cancer patients were enrolled in an IRB-
approved retrospective study; (3) result-driven sorting method

was a new sorting method that has been developed in our
study; (4) our 4D-MRI sorting method was tested on 12 healthy
volunteers using HASTE sequence, which provide T2-w MRI.
The technique introduced in Ref. 20 was tested on only one
human subject using HASTE sequence.

The technique we developed can be applied to other planes.
However, our study is a feasibility study in which we applied
the technique on axial plane as a test. We have done MRI
studies on other planes.30 Applying our technique on other
planes is in our future investigation plan.

4D-MRI aims at not only providing the respiratory motion
trajectory information, the organ/tumor volume, and volume
variations during respiratory are also important. Tracking the
respiratory motion was simply used as our way to evaluate the
4D-MRI technique we developed. Acquiring the trajectory is
not the aim of developing 4D-MRI.

Even though the preliminary results validated that the
retrospective phase sorting is a good reconstruction for T2-
weighted MRI, further investigation on patients is needed.
There are still several problems to be clarified: (1) how does
respiratory irregularity affect the image quality quantitatively?
(2) The external surrogate was placed near but not in the
volume of interest, will that affect the accuracy of phase
calculation? In other words, what if the tumor motion is not
correlated with the motion measured by the bellows system?23

(3) Is phase sorting a better resorting technique than other
rebin techniques20–22,24–27 if only sequential image acquisition
is available?

There are several limitations in this study. First, a signal
threshold for the 4D dataset completeness was set. This thresh-
old is determined by testing a regular breathing signal. How-
ever, each subject has a unique respiratory pattern that might
be different from the regular representative respiratory signal.
A self-adjusted threshold may be developed for the determi-
nation of threshold. Second, because of different breathing
patterns for different subjects, the period for average breathing
cycles could be considerably different. Determining a reason-
able total number of phase bins specifically for each subject
before 4D-MRI image acquisition using the breathing pattern
analysis results could be our future study topic. Third, the
average scanning time for the healthy volunteers in the study
was about 8 minutes, which is still long for clinical use. It
can be reduced by improving data utilization efficiency via
sophisticated sorting algorithms and image post processing
methods. The scanning procedure may also be simplified by
using image-based respiratory surrogates13,33–35 to improve the
convenience and efficacy of this technique for clinical use. Fur-
thermore, the number of human subjects in our study is limited
and there is no abdominal or lung cancer patient data. Although
there are publications reporting that no significant difference of
respiratory motion patterns is found between healthy subjects
and abdominal or lung cancer patients,27 patient study is still
desirable for the phase sorting technique on sequential image
acquisition mode. Patient study is needed to verify the tumor
contrast-to-noise ratio (CNR) improvement as compared to
T2*/T1-based 4D-MRI. Further assessments are required to
test the accuracy and robustness of the technique with a larger
pool of healthy volunteers and patients.
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5. CONCLUSION

In this study, a novel T2-weighted 4D-MRI retrospective
phase sorting technique based on HASTE/SSFSE sequence
has been developed. Compared to other 4D imaging tech-
niques, this phase sorting technique can be successfully applied
to T2-weighted MRI sequence HASTE/SSFSE which is devoid
of cine mode. Scanning time required for 4D reconstruction
has been evaluated. The feasibility has been demonstrated on
digital phantom and healthy volunteers using bellows system
as the surrogate for free breathing.

ACKNOWLEDGMENTS

This work is partly supported by funding from NIH (No.
1R21CA165384) and a research grant from the Golfers
Against Cancer (GAC) Foundation.

a)Author to whom correspondence should be addressed. Electronic mail:
jing.cai@duke.edu; Telephone: 919-684-1089; Fax: 919-660-2180.

1G. D. Hugo and M. Rosu, “Advances in 4D radiation therapy for managing
respiration: Part I–4D imaging,” Z. Med. Phys. 22(4), 258–271 (2012).

2P. Keall, “4-dimensional computed tomography imaging and treatment plan-
ning,” Semin. Radiat. Oncol. 14(1), 81–90 (2004).

3D. A. Low, M. Nystrom, E. Kalinin, P. Parikh, J. F. Dempsey, J. D. Bradley, S.
Mutic, S. H. Wahab, T. Islam, G. Christensen, D. G. Politte, and B. R. Whit-
ing, “A method for the reconstruction of four-dimensional synchronized CT
scans acquired during free breathing,” Med. Phys. 30, 1254–1263 (2003).

4G. S. Mageras, A. Pevsner, E. D. Yorke, K. E. Rosenzweig, E. C. Ford,
A. Hertanto, S. M. Larson, D. M. Lovelock, Y. E. Erdi, S. A. Nehmeh,
J. L. Humm, and C. C. Ling, “Measurement of lung tumor motion using
respiration-correlated CT,” Int. J. Radiat. Oncol., Biol., Phys. 60, 933–941
(2004).

5S. S. Vedam, P. J. Keall, V. R. Kini, H. Mostafavi, H. P. Shukla, and R.
Mohan, “Acquiring a four-dimensional computed tomography dataset using
an external respiratory signal,” Phys. Med. Biol. 48(1), 45–62 (2003).

6E. Rietzel, T. Pan, and G. T. Chen, “Four-dimensional computed tomog-
raphy: Image formation and clinical protocol,” Med. Phys. 32, 874–889
(2005).

7W. Lu, P. J. Parikh, I. M. El Naqa, M. M. Nystrom, J. P. Hubenschmidt, S.
H. Wahab, S. Mutic, A. K. Singh, G. E. Christensen, J. D. Bradley, and D.
A. Low, “Quantitation of the reconstruction quality of a four-dimensional
computed tomography process for lung cancer patients,” Med. Phys. 32,
890–901 (2005).

8C. Gianoli, M. Riboldi, M. F. Spadea, L. L. Travaini, M. Ferrari, R. Mei,
R. Orecchia, and G. Baroni, “A multiple points method for 4D CT image
sorting,” Med. Phys. 38, 656–667 (2011).

9Y. Hu, S. D. Caruthers, D. A. Low, P. J. Parikh, and S. Mutic, “Respiratory
amplitude guided 4-dimensional magnetic resonance imaging,” Int. J. Ra-
diat. Oncol., Biol., Phys. 86(1), 198–204 (2013).

10Y. Y. Vinogradskiy, P. Balter, D. S. Followill, P. E. Alvarez, R. A. White,
and G. Starkschall, “Comparing the accuracy of four-dimensional photon
dose calculations with three-dimensional calculations using moving and
deforming phantoms,” Med. Phys. 36, 5000–5006 (2009).

11T. Pan, T. Y. Lee, E. Rietzel, and G. T. Chen, “4D-CT imaging of a
volume influenced by respiratory motion on multi-slice CT,” Med. Phys. 31,
333–340 (2004).

12Z. Tian, X. Jia, B. Dong, Y. Lou, and S. B. Jiang, “Low-dose 4DCT
reconstruction via temporal nonlocal means,” Med. Phys. 38(3), 1359–1365
(2011).

13J. Cai, Z. Chang, Z. Wang, W. P. Segars, and F. Yin, “Four-dimensional mag-
netic resonance imaging (4D-MRI) using image-based respiratory surro-
gate: A feasibility study,” Med. Phys. 38(12), 6384–6394 (2011).

14J. Dinkel, C. Hintze, R. Tetzlaff, P. E. Huber, K. Herfarth, J. Debus, H. U.
Kauczor, and C. Thieke, “4D-MRI analysis of lung tumor motion in patients
with hemi-diaphragmatic paralysis,” Radiother. Oncol. 91, 449–454 (2009).

15J. M. Blackall, S. Ahmad, M. E. Miquel, J. R. McClelland, D. B. Landau, and
D. J. Hawkes, “MRI-based measurements of respiratory motion variability
and assessment of imaging strategies for radiotherapy planning,” Phys. Med.
Biol. 51, 4147–4169 (2006).

16J. Yang, J. Cai, H. Wang, Z. Chang, B. Czito, M. Bashir, and F. Yin,
“Four-dimensional magnetic resonance imaging using axial body area as
respiratory surrogate: Initial patient results,” Int. J. Radiat. Oncol., Biol.,
Phys. 88(4), 907–912 (2014).

17G. R. Mattison, G. M. Glazer, L. E. Quint, I. R. Francis, R. L. Bree,
and W. D. Ensminger, “MR imaging of hepatic focal nodular hyperplasia:
Characterization and distinction from primary malignant hepatic tumors,”
Am. J. Roentgenol. 148(4), 711–715 (1987).

18D. V. Sahani and P. K. Sanjeeva, “Imaging the liver,” Oncologist 9(4),
385–397 (2004).

19G. A. Krinsky, V. S. Lee, N. D. Theise, J. C. Weinreb, N. M. Rofsky,
T. Diflo, and L. W. Teperman, “Hepatocellular carcinoma and dysplastic
nodules in patients with cirrhosis: Prospective diagnosis with MR imaging
and explantation correlation,” Radiology 219(2), 445–454 (2001).

20E. Tryggestad, A. Flammang, S. Han-Oh, R. Hales, J. Herman, T. McNutt,
T. Roland, S. M. Shea, and J. Wong, “Respiration-based sorting of dynamic
MRI to derive representative 4D-MRI for radiotherapy planning,” Med.
Phys. 40, 051909 (12pp.) (2013).

21W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes, and B. M. Tsui,
“4D XCAT phantom for multimodality imaging research,” Med. Phys. 37,
4902–4915 (2010).

22R. K. Panta, P. Segars, F. F. Yin, and J. Cai, “Establishing a framework to
implement 4D XCAT phantom for 4D radiotherapy research,” J. Cancer Res.
Ther. 8(4), 565–570 (2012).

23A. S. Beddar, K. Kainz, T. M. Briere, Y. Tsunashima, T. Pan, K. Prado, R.
Mohan, M. Gillin, and S. Krishnan, “Correlation between internal fiducial
tumor motion and external marker motion for liver tumors imaged with 4D-
CT,” Int. J. Radiat. Oncol., Biol., Phys. 67(2), 630–638 (2007).

24J. R. Olsen, W. Lu, J. P. Hubenschmidt, M. M. Nystrom, P. Klahr, J. D.
Bradley, D. A. Low, and P. J. Parikh, “Effect of novel amplitude/phase
binning algorithm on commercial four-dimensional computed tomography
quality,” Int. J. Radiat. Oncol., Biol., Phys. 70(1), 243–252 (2008).

25N. M. Wink, C. Panknin, and T. D. Solberg, “Phase versus amplitude sorting
of 4D-CT data,” J. Appl. Clin. Med. Phys. 7(1), 77–85 (2006).

26J. Ehrhardt, R. Werner, T. Frenzel, D. Säring, W. Lu, D. A. Low, and H.
Handels, “Reconstruction of 4D-CT data sets acquired during free breathing
for the analysis of respiratory motion,” Proc. SPIE 6144, 614414 (2006).

27W. Lu, P. J. Parikh, J. P. Hubenschmidt, J. D. Bradley, and D. A. Low,
“A comparison between amplitude sorting and phase-angle sorting using
external respiratory measurement for 4D CT,” Med. Phys. 33, 2964–2974
(2006).

28T. D. Verstynen and D. Vibhas, “Using pulse oximetry to account for high
and low frequency physiological artifacts in the BOLD signal,” NeuroImage
55(4), 1633–1644 (2011).

29C. Wiebking, N. W. Duncan, B. Tiret, D. J. Hayes, M. Marjaǹska, J. Doyon,
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